химия, решение задач по химии, репетитор по химии

Навигация по сайту



Новинка!!! Видеоуроки по химии
Узнай подробности прямо сейчас!

Для содержимого этой страницы требуется более новая версия Adobe Flash Player.

Получить проигрыватель Adobe Flash Player


Когда укусит муравей, то место укуса начинает болеть, так как на кожу попала сильная муравьиная кислота. Смажьте место укуса нашатырным спиртом и вы тотчас же избавитесь от боли, потому что нашатырный спирт - щелочь, уничтожает кислоту. Смазывание укушенного пчелой места нашатырным спиртом действует также успокаивающе.

Электронный журнал сайта xumuktutor.ru - это интересные факты из жизни известных химиков, загадочные химические явления, удивительные химические вещества и аудио- и видеопомощь по химии. Посетите наш электронный журнал для студентов и школьников!





Силиконовый каучуковый материал


Достижения в области химии на xumuktutor.ru

↑ Grab this Headline Animator

Настоящее изобретение, по мнению авторов, относится к области электротехники, к изоляционным материалам, в частности к силиконовому каучуковому материалу, содержащему смесь полиалкилсилоксана (А) и полиарилсилоксана (В), которая содержит полиарилсилоксан (В) в количестве 3-10 мас.ч., на 100 мас.ч. полиалкилсилоксана. Изобретение также относится к способу получения такого материала. Указанный материал используется в широком ряду применений при низких температурах. Одно из применений такого материала относится к электрической изоляции. Указанное количество полиарилсилоксана в смеси обеспечивает оптимальное снижение коэффициента вязкости при температуре -50°С, при одновременном снижении стоимости изоляционного материала, что является техническим результатом изобретения.

Предпосылки создания изобретения

Силиконовый каучуковый материал обычно основан на полиалкилсилоксане, наиболее часто полидиметилсилоксане, обозначенном как ПДМС (PDMS) в данной заявке, который в температурном интервале примерно от -35 до 150°C является химически и физически стойким материалом с хорошими механическими и электрическими свойствами, который может использоваться для многих различных технических целей. Силиконовый каучуковый материал сшивают, например, при подаче подходящего органического пероксида, который взаимодействует с группами на главной цепи ПДМС и поэтому связывает макромолекулы вместе. Основная химия силиконового каучука и его сшивания ясна, например, из F.Billmeyer, Textbook of polymer science, John & Sons Ltd, pp. 482-484. Другой путь достижения сшивания заключается во введении платинового катализатора, который разрушает двойные связи на винильных группах и делает их реакционноспособными по отношению к смежным силоксановым цепям.

Также хорошо известно, что силиконовый каучуковый материал используется для различных электроизоляционных целей, что является понятным, например, из R. Hackham, Outdoor HV Composite Polymeric Insulators, IEEE Trans Dielectrics and Elec. Insul., Vol. 6 (1999), pp. 557-585.

Чистые полисилоксаны могут смешиваться с наполнителями как с так называемыми объемными наполнителями, такими как, например, диоксид кремния или кварц, так и с волокнистыми наполнителями, такими как, например, короткие или длинные стеклянные волокна. Примеры силиконовых каучуковых материалов с объемными наполнителями ясны из ЕР 1052655В1.

Силиконовый каучуковый материал, полностью состоящий из ПДМС, начинает кристаллизоваться примерно при -40°C, и затем материал становится жестким и хрупким. Для некристаллизованных силиконов с молекулярной массой примерно 2000 единиц так называемая температура замерзания будет сниженной при замещении метильных групп на главной цепи ПДМС фенильными группами. Фенильные группы больше метильных групп и поэтому подавляют структурную упорядоченность. Это описано в Warrick et al., Polymer Chemistry of Linear Siloxanes, Industrial Enginering Chemistry, 1952, p. 2199. Однако стоимость полидиарилсилоксана является высокой по сравнению с полидиалкилсилоксаном, и по этой причине полидиарилсилоксан не может использоваться для многих электрических применений.

ЕР 0470745А2 описывает, что 100 мас.ч. органополисилоксановой смолы с формулой среднего повторяющегося звена RaSiO4-A/2, где R представляет собой одновалентную углеводородную группу с долей алкила не менее 50%, и а представляет собой число в интервале 1,98-2,02, смешивают с неорганическими наполнителями и 1-20 мас.ч. органосилан- или органосилоксановых олигомеров, имеющих формулу
силиконовый каучук
где m представляет собой число от 1 до 20, n представляет собой число от 0 до 20. Помимо этого вводят органический пероксид.

Под органополисилоксановой смолой понимают замещенную или незамещенную одновалентную углеводородную группу. Примерами таких групп являются алкил-, алкенил-, циклоалкенил- и аралкилгруппы. Согласно C.A. Hampel and G.G.Hawley, Glossary of Chemical Terms, Van Nostrand Reinold Company, 1976, p. 196 «олиго» представляет собой «префикс, производный от греческого, означающий «несколько» или «немного»; в химии он встречается в таких терминах, как олигосахариды (содержащие от 3 до 10 моносахаридных звеньев) и олигодинамическая (слабобактерицидная) способность».

Для электрических наружных применений в странах, имеющих зимний климат, требуется, чтобы материал сохранял хорошие механические свойства до температур -50°C. Это относится, например, к изоляторам электрических устройств, которые размещаются вне помещений. В настоящее время используются фарфоровые изоляторы, механические свойства которых не изменяются значительно, когда температура падает от примерно 100°C до примерно -50°C. Фарфоровые изоляторы имеют недостатком то, что материал является хрупким. Это предполагает, в первую очередь, что, если изолятор взрывается изнутри благодаря неблагоприятным условиям, например быстрому увеличению давления, тогда в соседнюю зону могут разлетаться острые части, и, во-вторых, что при определении размеров с точки зрения механической прочности должен использоваться высокий коэффициент механической надежности. Такой фарфор имеет относительно высокую плотность, последнее означает, что фарфоровые изоляторы становятся тяжелыми. Фарфоровые изоляторы обычно также обуславливают высокую стоимость, а возможность получения заданной геометрии фарфорового изолятора требует значительного вклада в разработку материала и способа.

Цели настоящего изобретения согласно авторам. Главной целью настоящего изобретения является предложение силиконового каучукового материала, который выдерживает температуры до -50°C и снижает недостатки прототипа. Другой целью настоящего изобретения является получение лучших механических свойств силиконового каучукового материала в пределах значительной части используемого температурного интервала, чем до сих пор известные материалы.

Краткое описания изобретения

Материал согласно настоящему изобретению отличается тем, что компонент А, состоящий из полиалкилсилоксана, смешивается с компонентом В, состоящим из полиарилсилоксана. В некоторых отношениях полиарилсилоксаны имеют хорошие свойства, но являются дорогостоящими, и поэтому выгодны, также и с точки зрения стоимости является решение получать смесь. Полиалкилсилоксан в данной заявке означает органополисилоксан следующего среднего состава:
R0nSiO(4-n)/2 ,
где R0 представляет собой насыщенную или ненасыщенную одновалентную углеводородную группу, и n представляет собой число в интервале от 1,98 до 2,02. Число повторяющихся звеньев может составлять от 100 до 20000. Одним примером полиалкилсилоксана является полидиметилсилоксан, который составляет главную часть материала торговой марки Powersil 318. Powersil 318 также содержит органический пероксид для сшивания.

Полиарилсилоксан в данной заявке означает полидиметилсилоксан, у которого метильные группы на главной цепи молекул замещены замещенными или незамещенными фенилгруппами согласно следующей формуле:
полиарилсилоксан
в которой Rn, где n представляет собой число от 1 до 5, представляет собой арил- или алкилгруппы.

Одним примером полиарилсилоксана является главный ингредиент материала торговой марки Wacker Elastosil R490/55, но для изобретения могут использоваться другие материалы фенилированного силиконового каучука. Elastosil R490/55 также содержит органический пероксид для сшивания.

Смесь 1-15 мас.ч. компонента В на 100 мас.ч. компонента А дает улучшение податливости материала при -50°C при снижении в то же самое время стоимости по сравнению с материалом, который содержит только компонент В. Эксперименты и исследования неожиданно показывают, что смесь 3-10 мас.ч. компонента В на 100 мас.ч. компонента А дает предпочтительное снижение коэффициента жесткости при -50°C, тогда как в то же самое время стоимостной выигрыш является особенно большим. Такая смесь не оказывает влияния на технологические свойства, например вязкость, при получении компонентов, что является преимуществом. Коэффициент жесткости в данной заявке означает коэффициент жесткости или так называемый динамический модуль упругости G', который измеряется прибором, называемым динамическим механическим анализатором, с общепринятой аббревиатурой ДМА (DMA). Смесь имеет вязкость по Муни ML (1+4) при 23°C согласно стандарту DIN 53523 в интервале 50-65 М.

Возможность смешения различных количеств компонента В обеспечивает возможность обеспечения технологических свойств, отвечающих требованиям заказчика, например вязкости, и механических свойств, например коэффициента жесткости.

Согласно одному варианту данного изобретения материал содержит компонент С, который является органическим пероксидом, задачей которого является сшивание компонентов А и B в смеси. Примером подходящего органического пероксида является бис-(2,4-дихлорбензоил)пероксид. Компонент С вводится в смесь в количестве 0,01-5 мас.ч. на 100 мас.ч. компонента А, предпочтительно 1-4 мас.ч. на 100 мас.ч. компонента А.

Согласно другому варианту данного изобретения для сшивания компонентов А и B в смеси используется платиновый катализатор. Примерами платинового катализатора, который может использоваться для сшивания, являются различные типы платинового комплекса, которые растворяются, например, в спирте, ксилоле, дивинилсилоксане или циклических винилсилоксанах. Одним примером такого платинового комплекса является платинакарбонил-цикловинилметилсилоксановый комплекс. Предпочтительно, может использоваться введение 0,0005-0,02 мас.ч. платинового катализатора на 100 мас.ч. компонентов (А+В).

Согласно еще одному варианту в смесь компонента А, компонента В и компонента С также может быть введен компонент D. Компонент D содержит различные типы наполнителей для достижения желаемых свойств. Для улучшения механической прочности и коэффициента жесткости могут использоваться волокнистые наполнители. В данной заявке волокнистые наполнители означают количество удлиненных частиц, где размер материала в поперечном направлении составляет меньше 0,8 мм. Примерами волокнистых наполнителей являются короткие и длинные стеклянные волокна, а также арамидные волокна. В данной заявке короткие волокна означают волокна, длина которых является короче примерно 3 мм.

Для улучшения жесткости и твердости в качестве наполнителей могут использоваться объемные наполнители. В данной заявке объемные наполнители означают частицы, размер которых в трех взаимно перпендикулярных направлениях не отличается более чем в 10 раз. Средний размер частиц составляет меньше 3 мм. Примерами объемных наполнителей являются диоксид кремния, тригидрат алюминия, кварц и оксид алюминия. Для улучшения свойств материала могут использоваться волокнистые наполнители и объемные наполнители, иные, чем указанные выше.

Предпочтительно, введение компонента D в количестве в мас.ч., которое в 0,3-2,5 раза больше количества компонентов (А+В) в мас.ч., дает хорошую жесткость материала. Предпочтительный вариант получается при введении компонента D в количестве 0,5-1,5 мас.ч. на 1 мас.ч. компонентов (А+В), что дает очень выгодную комбинацию жесткости, вязкости и стоимости.

Особенно предпочтительный материал получается, если количество компонента D (мас.ч.) составляет 0,8-1,2 раза от количества (мас.ч.) компонентов (А+В). Это дает материал, который имеет хороший коэффициент жесткости, особенно принимая во внимание необходимость электрических изоляторов с пазами, вязкость, которая делает материал легким для формования, и низкую стоимость материала.

Смесь компонентов согласно настоящему изобретению используется, в частности, для электрической изоляции.

Авторы данного изобретения: Хильборг Хенрик (SE), Йоханнсон Томми (SE), Вильсон Леннарт (SE).

Другие открытия в области органической химии:

Перейти к полному списку открытий

Присылайте свои научные статьи на электронный адрес admin@xumuktutor.ru, и мы опубликуем их абсолютно бесплатно на страницах нашего сайта. Ваши научные достижения станут известны всем (или почти всем).




smart 609354696
Smart_art13
admin@xumuktutor.ru



Хотите узнать много интересного из области науки? Посетите наш электронный журнал!

Вакансии на сайте

Приглашаем к сотрудничеству преподавателей, аспирантов и успешных выпускников для выполнения студенческих работ на заказ (рефератов, курсовых и контрольных работ). Подробнее >>

Сделать заказ! Решение задач по химии, математике и другим предметам, написание рефератов, курсовых, on-line консультации через Skype - доступно, качественно, в срок. Нам доверяют! Закажи и спи спокойно. Гарантия - высокие баллы.

Полезная информация

Сегодня: 14.12.17

"Всегда не хватает времени, чтобы выполнить работу, но на то, чтобы переделать, время находится," - закон Мексимена

Курсы валют по данным Центробанка:
Доллар 59.1446 рублей
Евро 69.4653 рублей


копирайт