химия, решение задач по химии, репетитор по химии

Навигация по сайту



Новинка!!! Видеоуроки по химии
Узнай подробности прямо сейчас!

Для содержимого этой страницы требуется более новая версия Adobe Flash Player.

Получить проигрыватель Adobe Flash Player


Когда укусит муравей, то место укуса начинает болеть, так как на кожу попала сильная муравьиная кислота. Смажьте место укуса нашатырным спиртом и вы тотчас же избавитесь от боли, потому что нашатырный спирт - щелочь, уничтожает кислоту. Смазывание укушенного пчелой места нашатырным спиртом действует также успокаивающе.

Электронный журнал сайта xumuktutor.ru - это интересные факты из жизни известных химиков, загадочные химические явления, удивительные химические вещества и аудио- и видеопомощь по химии. Посетите наш электронный журнал для студентов и школьников!





Способ комплексной переработки газообразного углеродсодержащего сырья (варианты)


Достижения в области химии на xumuktutor.ru

↑ Grab this Headline Animator

Способ комплексной переработки газообразного углеродсодержащего сырья относится к способам переработки метансодержащих газов, включая шахтный метан, метан угольных пластов, природный и коксовый газы, и различных металлургических газов. Способ комплексной переработки газообразного углеродсодержащего сырья включает стадию плазмохимической конверсии сырья с получением синтез-газа, стадию конверсии синтез-газа и вспомогательные стадии - рекуперации тепла, производства электроэнергии, очистки и компрессии синтез-газа, разделения газов и воздуха. В качестве газообразного углеродсодержащего сырья используют угольный метан с концентрацией воздуха не более 60% об., который разделяют на два потока: обедненный метаном поток направляют на сжигание и обогащенный метаном поток, одну часть которого вместе с выделенным из воздуха кислородом или кислородом и водяным паром подают в, по крайней мере, один электродуговой плазмотрон, а другую часть обогащенного метаном потока нагревают до температуры 100-400°С и подают на стадию сатурации и очистки от метанола, где газовый поток контактирует с метанольной водой, которую подают со стадии конверсии синтез-газа, процесс тепломассообмена газа с жидкостью осуществляют на твердом носителе или в центробежно-барботажном слое, при этом очищенную от метанола воду применяют для производства водяного пара, а выходящий газовый поток нагревают на стадии рекуперации тепла и вместе с подогретым кислородом и выходящим из плазмотрона с температурой более 1500°С потоком подают в камеру смешения плазмохимического реактора с получением синтез-газа, содержащего до 20% об. азота, при этом синтез-газ охлаждают на стадии рекуперации тепла и после прохождения стадии очистки и компрессии направляют в каталитический реактор стадии конверсии синтез-газа, где процесс конверсии синтез-газа проводят под давлением 40-150 атм или в одной зоне, или в двух последовательно расположенных зонах каталитического реактора, проводят рециркуляцию газообразных продуктов реакции и непрореагировавших компонентов синтез-газа при многоступенчатом охлаждении выходящего из реактора газа до 10-30°С и конденсации целевого органического продукта, например, бензиновой фракции и побочных продуктов - метанольной воды и углеводородных газов, которые подают в плазмохимический реактор или на стадию производства электроэнергии, при этом отводимый из рецикла сдувочный газ направляют на сжигание или разделяют на два потока: обогащенный азотом поток - сжигают, а обедненный азотом синтез-газ - компримируют и подают на смешение с очищенным и сжатым до рабочего давления синтез-газом, при этом обедненный метаном поток, сдувочный газ или обогащенный азотом поток направляют на стадию производства электроэнергии. Представлены два варианта способа. Технический результат - достижение высокой рекуперации физического тепла потоков, использование энергетического потенциала сырья для полной автономности конверсии газообразного углеродсодержащего сырья, экологическая чистота производства, создание условий для безопасности технологического процесса добычи и переработки метанвоздушных смесей, утилизация газообразного углеродсодержащего сырья (металлургический газ, коксовый газ, дымовой газ, шахтный метан).

Формула изобретения

  1. Способ комплексной переработки газообразного углеродсодержащего сырья, включающий стадию плазмохимической конверсии сырья, основанный на взаимодействии сырья, как правило, с водяным паром, кислородом, диоксидом углерода, а также с их смесями с получением синтез-газа, стадию конверсии синтез-газа и вспомогательные стадии - рекуперации тепла, производства электроэнергии, очистки и компрессии синтез-газа, разделения газов и воздуха, отличающийся тем, что в качестве газообразного углеродсодержащего сырья используют угольный метан с концентрацией воздуха не более 60 об.%, который разделяют на два потока:
    обедненный метаном поток направляют на сжигание и обогащенный метаном поток, одну часть которого вместе с выделенным из воздуха кислородом или кислородом и водяным паром подают в, по крайней мере, один электродуговой плазмотрон, а другую часть обогащенного метаном потока нагревают до температуры 100-400°С и подают на стадию сатурации и очистки от метанола, где газовый поток контактируют с метанольной водой, которую подают со стадии конверсии синтез-газа, процесс тепломассообмена газа с жидкостью осуществляют на твердом носителе или в центробежно-барботажном слое, при этом очищенную от метанола воду применяют для производства водяного пара, а выходящий газовый поток нагревают на стадии рекуперации тепла и вместе с подогретым кислородом и выходящим из плазмотрона с температурой более 1500°С потоком подают в камеру смешения плазмохимического реактора с получением синтез-газа, содержащего до 20 об.% азота, при этом синтез-газ охлаждают на стадии рекуперации тепла и после прохождения стадии очистки и компрессии направляют в каталитический реактор стадии конверсии синтез-газа, где процесс конверсии синтез-газа проводят под давлением 40-150 атм или в одной зоне при средней температуре в реакторе 360-420°С на бифункциональном катализаторе синтеза углеводородов или в двух последовательно расположенных зонах каталитического реактора при температуре 230-420°С в первой зоне - на бифункциональном катализаторе синтеза углеводородов или катализаторе синтеза метанола и/или синтеза диметилового эфира и при температуре 240-500°С во второй зоне каталитического реактора - на цеолитсодержащем катализаторе, рециркуляции газообразных продуктов реакции и непрореагировавших компонентов синтез-газа при многоступенчатом охлаждении выходящего из реактора газа до 10-30°С и конденсации целевого органического продукта, например, бензиновой фракции и побочных продуктов - метанольной воды и углеводородных газов, которые подают в плазмохимический реактор или на стадию производства электроэнергии, при этом отводимый из рецикла сдувочный газ направляют на сжигание или разделяют на два потока: обогащенный азотом поток сжигают, а обедненный азотом синтез-газ компримируют и подают на смешение с очищенным и сжатым до рабочего давления синтез-газом, при этом обедненный метаном поток, сдувочный газ или обогащенный азотом поток направляют на стадию производства электроэнергии.
  2. Способ по п.1, отличающийся тем, что в качестве генератора плазмы используют по крайней мере, один двухструйный электродуговой плазмотрон.
  3. Способ по п.1, отличающийся тем, что на стадии разделения воздуха получают азот, который направляют на технические нужды, и аргон, который используют для защиты электродов плазмотрона. 4. Способ комплексной переработки газообразного углеродсодержащего сырья, включающий стадию плазмохимической конверсии сырья, основанный на взаимодействии сырья, как правило, с водяным паром, кислородом, диоксидом углерода, а также с их смесями с получением синтез-газа, стадию конверсии синтез-газа и вспомогательные стадии - рекуперации тепла, производства электроэнергии, очистки и компрессии синтез-газа, разделения газов и воздуха, отличающийся тем, что в качестве газообразного углеродсодержащего сырья используют металлургические газы и природный газ, одну часть которого вместе с выделенным из воздуха кислородом или кислородом и водяным паром подают в, по крайней мере, один электродуговой плазмотрон, а другую часть природного газа нагревают до температуры 100-400°С и подают на стадию сатурации и очистки от метанола, где газовый поток контактируют с метанольной водой, которую подают со стадии конверсии синтез-газа, процесс тепломассообмена газа с жидкостью осуществляют на твердом носителе или в центробежно-барботажном слое, при этом очищенную от метанола воду применяют для производства водяного пара, а выходящий газовый поток нагревают на стадии рекуперации тепла и вместе с выходящим из плазмотрона с температурой более 1500°С потоком и подогретыми кислородом или кислородом и диоксидом углерода, полученным из металлургических или металлургических и дымовых газов на стадии выделения оксидов углерода, подают в камеру смешения плазмохимического реактора с получением синтез-газа, при этом синтез-газ охлаждают на стадии рекуперации тепла, смешивают с выделенными из металлургических газов монооксидом углерода или оксидами углерода и водородом и после прохождения стадии очистки и компрессии направляют в каталитический реактор стадии конверсии синтез-газа, где процесс конверсии синтез-газа проводят под давлением 40-150 атм или в одной зоне при средней температуре в реакторе 360-420°С на бифункциональном катализаторе синтеза углеводородов или в двух последовательно расположенных зонах каталитического реактора при температуре 230-420°С в первой зоне - на бифункциональном катализаторе синтеза углеводородов или катализаторе синтеза метанола и/или синтеза диметилового эфира и при температуре 240-500°С во второй зоне каталитического реактора - на цеолитсодержащем катализаторе, рециркуляции газообразных продуктов реакции и непрореагировавших компонентов синтез-газа при многоступенчатом охлаждении выходящего из реактора газа до 10-30°С и конденсации целевого органического продукта, например, бензиновой фракции и побочных продуктов - метанольной воды и углеводородных газов, которые подают в плазмохимический реактор или на стадию производства электроэнергии, при этом отводимый из рецикла сдувочный газ направляют на сжигание или разделяют на два потока: обогащенный азотом поток сжигают, а обедненный азотом синтез-газ компримируют и подают на смешение с очищенным и сжатым до рабочего давления синтез-газом, при этом сдувочный газ или обогащенный азотом поток направляют на стадию производства электроэнергии.
  4. Способ по п.6, отличающийся тем, что в качестве генератора плазмы используют, по крайней мере, один двухструйный электродуговой плазмотрон.
  5. Способ по п.6, отличающийся тем, что в качестве газообразного углеродсодержащего сырья используют металлургические газы - доменный или конверторный газы, отходящий газ ферросплавного или другого металлургического производства, использующего углеродсодержащее сырье.
  6. Способ по п.6, отличающийся тем, что на стадии разделения воздуха получают азот, который направляют на технические нужды, и аргон, который используют для защиты электродов плазмотрона.
  7. Способ комплексной переработки газообразного углеродсодержащего сырья, включающий стадию плазмохимической конверсии сырья, основанный на взаимодействии сырья, как правило, с водяным паром, кислородом, диоксидом углерода, а также с их смесями с получением синтез-газа, стадию конверсии синтез-газа и вспомогательные стадии - рекуперации тепла, производства электроэнергии, очистки и компрессии синтез-газа, разделения газов и воздуха, отличающийся тем, что в качестве газообразного углеродсодержащего сырья используют металлургические газы, возможно дымовые газы, и коксовый газ, который разделяют на два потока: водородсодержащий поток очищают, компримируют и подают на стадию конверсии синтез-газа, и обогащенный метаном поток, одну часть которого вместе с выделенным из воздуха кислородом или кислородом и водяным паром подают в, по крайней мере, один электродуговой плазмотрон, а другую часть обогащенного метаном потока нагревают до температуры 100-400°С и подают на стадию сатурации и очистки от метанола, где газовый поток контактируют с метанольной водой, которую подают со стадии конверсии синтез-газа, процесс тепломассообмена газа с жидкостью осуществляют на твердом носителе или в центробежно-барботажном слое, при этом очищенную от метанола воду применяют для производства водяного пара, а выходящий газовый поток нагревают на стадии рекуперации тепла и вместе с выходящим из плазмотрона с температурой более 1500°С потоком и подогретыми кислородом или кислородом и диоксидом углерода, полученным из металлургических или металлургических и дымовых газов на стадии выделения оксидов углерода, подают в камеру смешения плазмохимического реактора с получением синтез-газа, при этом синтез-газ охлаждают на стадии рекуперации тепла, смешивают с водородсодержащим потоком или водородсодержащим потоком и выделенными из металлургических газов монооксидом углерода или оксидами углерода и водородом и после очистки и компримирования направляют в каталитический реактор стадии конверсии синтез-газа, где процесс конверсии синтез-газа проводят под давлением 40-150 атм или в одной зоне при средней температуре в реакторе 360-420°С на бифункциональном катализаторе синтеза углеводородов или в двух последовательно расположенных зонах каталитического реактора при температуре 230-420°С в первой зоне - на бифункциональном катализаторе синтеза углеводородов или катализаторе синтеза метанола и/или синтеза диметилового эфира и при температуре 240-500°С во второй зоне каталитического реактора - на цеолитсодержащем катализаторе, рециркуляции газообразных продуктов реакции и непрореагировавших компонентов синтез-газа при многоступенчатом охлаждении выходящего из реактора газа до 10-30°С и конденсации целевого органического продукта, например, бензиновой фракции и побочных продуктов - метанольной воды и углеводородных газов, которые подают в плазмохимический реактор или на стадию производства электроэнергии, при этом отводимый из рецикла сдувочный газ направляют на сжигание или разделяют на два потока: обогащенный азотом поток сжигают, а обедненный азотом синтез-газ компримируют и подают на смешение с очищенным и сжатым до рабочего давления синтез-газом, при этом сдувочный газ или обогащенный азотом поток направляют на стадию производства электроэнергии.
  8. Способ по п.11, отличающийся тем, что в качестве генератора плазмы используют, по крайней мере, один двухструйный электродуговой плазмотрон.
  9. Способ по п.11, отличающийся тем, что в качестве газообразного углеродсодержащего сырья используют металлургические газы - доменный или конверторный газы, отходящий газ ферросплавного или другого металлургического производства, использующего углеродсодержащее сырье.
  10. Способ по п.11, отличающийся тем, что на стадии разделения воздуха получают азот, который направляют на технические нужды, и аргон, который используют для защиты электродов плазмотрона.

Авторы изобретения: Мысов Владислав Михайлович (RU), Лукашов Владимир Петрович (RU), Фомин Владимир Викторович (RU), Ионе Казимира Гавриловна (RU), Ващенко Сергей Петрович (RU), Соломичев Максим Николаевич (RU).

Другие открытия в области неорганической химии:

Перейти к полному списку открытий

Присылайте свои научные статьи на электронный адрес admin@xumuktutor.ru, и мы опубликуем их абсолютно бесплатно на страницах нашего сайта. Ваши научные достижения станут известны всем (или почти всем).




smart 609354696
Smart_art13
admin@xumuktutor.ru



Хотите узнать много интересного из области науки? Посетите наш электронный журнал!

Вакансии на сайте

Приглашаем к сотрудничеству преподавателей, аспирантов и успешных выпускников для выполнения студенческих работ на заказ (рефератов, курсовых и контрольных работ). Подробнее >>

Сделать заказ! Решение задач по химии, математике и другим предметам, написание рефератов, курсовых, on-line консультации через Skype - доступно, качественно, в срок. Нам доверяют! Закажи и спи спокойно. Гарантия - высокие баллы.

Полезная информация

Сегодня: 14.12.17

"...ученый без трудов - дерево без плодов..." - Саади

Курсы валют по данным Центробанка:
Доллар 59.1446 рублей
Евро 69.4653 рублей


копирайт